

PROGRAMA EDUCATIVO:

LICENCIATURA EN INGENIERÍA EN ENERGÍA Y DESARROLLO SOSTENIBLE

EN COMPETENCIAS PROFESIONALES

PROGRAMA DE ASIGNATURA: INSTALACIONES ELÉCTRICAS INDUSTRIALES CLAVE: E-IEI-1

Propósito de apr Asignatura	endizaje de la	El estudiante desarrollará la instalación eléctrica industrial a través de la elaboración e interpretación de los planos eléctricos, tomando en cuenta las condiciones de seguridad y normatividad vigente par determinar los parámetros de operación y condiciones de funcionamiento.				
Competencia a la contribuye la asi	•	Proponer las fuentes de energía mediante el análisis de los recursos naturales y el resultado de la audito energética para contribuir al desarrollo sostenible de la región.			les y el resultado de la auditoría	
Tipo de competencia	Cuatrimestre	e Créditos	Modalidad	Horas por semana	Horas Totales	
Específica	3	5.63	Escolarizada	6	90	

Unidades de Aprendizaje	Horas del Saber	Horas del Saber Hacer	Horas Totales
Cindudes de Aprendizaje			
I. Fundamentos de las instalaciones eléctricas industriales.	2	4	6
II. Cálculos de los componentes de una instalación eléctrica.	10	14	24
III. Subestaciones eléctricas.	7	11	18
IV. Diagramas de control de motores eléctricos.	7	11	18
V. Eficiencia energética en sistemas eléctricos.	10	14	24

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Totales	36	54	90

Funciones	Capacidades	Criterios de Desempeño
Evaluar las condiciones de operación de los sistemas eléctricos mediante la identificación de sus componentes eléctricos y el consumo energético, para identificar las necesidades y contribuir a la eficiencia energética.	Identificar los componentes de un sistema eléctrico mediante la interpretación de los diagramas unifilares y planos eléctricos para determinar los parámetros de operación y condiciones de trabajo, bajo la normatividad vigente.	Elabora un reporte técnico donde interprete las condiciones de trabajo de los componentes de un sistema eléctrico, incluyendo: - Parámetros de operación: Voltaje, potencia, factor de potencia, eficiencia y condiciones de operación, entre otros. - Características de seguridad e higiene del ambiente laboral. - Especificaciones de localización de los componentes. - Diagrama esquemático que muestre la configuración del sistema, fuentes de suministro, líneas de distribución y cargas instaladas.

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Unidad de Aprendizaje	I. Fundamentos de las instalaciones eléctricas industriales.					
Propósito esperado	El estudiante identificará los elementos de una instalación eléctrica a través de la simbología y normatividad vigente, para la elaboración e interpretación de planos y diagramas eléctricos.					
Tiempo Asignado	Horas del Saber	2	Horas del Saber Hacer	4	Horas Totales	6

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Tipos de instalaciones eléctricas.	Clasificar los tipos de cargas en función de las instalaciones eléctricas. Distinguir la diferencia entre las instalaciones eléctricas residenciales, comerciales e industriales.	Seleccionar los diferentes tipos de carga en base a la instalación física. Identificar los diferentes dispositivos que componen los elementos de una instalación eléctrica residencial, comercial e industrial.	Desarrollar el pensamiento analítico a través de la identificación de conceptos para resolver problemas en su formación académica o su entorno. Asumir la responsabilidad y honestidad para realizar
Componentes de una Instalación Eléctrica Industrial.	Describir los componentes eléctricos de una instalación eléctrica residencial, comercial e industrial: Acometidas, medidores, interruptores, conductores, canalizaciones y centros de carga.	Seleccionar los componentes eléctricos de una instalación eléctrica residencial, comercial e industrial, basados en la simbología y la normatividad vigente.	actividades en forma individual y en equipo en forma proactiva. Ejercer liderazgo en la práctica de laboratorio,
Simbología y Normatividad vigente.	Identificar la simbología de los componentes eléctricos de una instalación eléctrica de acuerdo con la normatividad vigente.	Elegir en base a la simbología los componentes de una instalación eléctrica industrial.	coordinando las actividades para el buen resultado de la práctica o proceso a desarrollar.

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

instalaciones eléctricas NOM-001 SEDE	Documentar la normatividad de las instalaciones eléctricas en base a la NOM-001-SEDE.	
	Elaborar el diagrama unifilar de una instalación eléctrica industrial utilizando software especializado.	

Proceso Enseñanza-Aprendizaje				
Métodos y técnicas de enseñanza	Medios y materiales didácticos	Espacio Formativo		
Wetodos y teerneas de enserianza	ivicalos y materiales didacticos	Aula	Χ	
Prácticas de Laboratorio.	Pizarrón.	Laboratorio / Taller	Χ	
Equipos colaborativos.	Cañón.	Empresa		
Tareas de Investigación.	Banco de pruebas de transformadores.			
	Banco de control de motores eléctricos.			
	Simuladores.			

Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
Los estudiantes clasifican los diferentes tipos de carga en la aplicación del entorno laboral.	A partir del análisis práctico identificar los tipos de carga de una instalación eléctrica industrial y documentarlos en un reporte técnico incluyendo los componentes de un entorno laboral.	Guía de observación. Rúbrica.		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Unidad de Aprendizaje	II. Cálculo de los componentes de una instalación eléctrica.					
Propósito esperado	El estudiante calculará los componentes de una instalación eléctrica en base a la normatividad vigente y las especificaciones técnicas del fabricante.					
Tiempo Asignado	Horas del Saber	10	Horas del Saber Hacer	14	Horas Totales	24

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Cálculo de circuitos alimentadores, circuitos derivados, protecciones y canalizaciones.	Describir las características de los elementos que componen una instalación eléctrica industrial como: Tipo de conductores, tipo de protecciones y tipo de canalizaciones. Describir la metodología de cálculo de los componentes de una instalación eléctrica a través de la norma vigente de: conductores, canalizaciones y protecciones.	Seleccionar los elementos que componen una instalación eléctrica residencial, comercial e industrial. Estimar en base a la metodología de cálculo los componentes de una instalación eléctrica de acuerdo con la normatividad vigente.	Desarrollar el pensamiento analítico a través de la identificación de conceptos para resolver problemas en su formación académica o su entorno. Asumir la responsabilidad y honestidad para realizar actividades en forma individual y en equipo en
Cuadros de cargas.	Identificar los diferentes tipos de centros de carga. Describir la metodología en la elaboración de un cuadro de cargas.	Determinar los diferentes tipos de centros de carga en base a las características de una instalación eléctrica.	forma proactiva. Ejercer liderazgo en la práctica de laboratorio, coordinando las actividades para el buen resultado de la práctica o proceso a desarrollar.

Proceso Enseñanza-Aprendizaje

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Métodos y técnicas de enseñanza	Medios y materiales didácticos	Espacio Formativo	
Wetodos y teerneas de enserianza	Wedios y materiales didaeticos	Aula	Х
Prácticas de Laboratorio.	Pizarrón.	Laboratorio / Taller	Х
Equipos colaborativos.	Cañón.	Empresa	
Tareas de Investigación.	Banco de pruebas de transformadores.		
	Banco de control de motores eléctricos.		
	Simuladores.		

Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
El estudiante comprende los métodos de cálculo para circuitos alimentadores, derivados, protecciones y canalizaciones y analiza los diferentes tipos de centros de carga en las instalaciones eléctricas industrial	A partir de la metodología de cálculo de los componentes de una instalación y con base en la normatividad vigente y bajo las especificaciones técnicas elaborar un examen de conocimientos.	Ejercicios prácticos. Evaluación del desempeño.		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Unidad de Aprendizaje	III. Subestacione	III. Subestaciones eléctricas.				
Propósito esperado	El estudiante identificará los elementos de una subestación eléctrica para reconocer el suministro eléctrico de un sistema.					
Tiempo Asignado	Horas del Saber	7	Horas del Saber Hacer	11	Horas Totales	18

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Tipos de subestaciones eléctricas.	Clasificar los tipos de subestaciones eléctricas en función del tipo de transformador y aplicación.	Identificar los elementos que componen una subestación eléctrica.	Desarrollar el pensamiento analítico a través de la identificación de conceptos para resolver problemas en
Diseño de una subestación eléctrica.	Describir la metodología de cálculo de la potencia en KVA de un transformador eléctrico.	Calcular los KVA de un transformador eléctrico en función de la carga conectada.	su formación académica o su entorno. Asumir la responsabilidad y
Diagramas Unifilares.	Representar los elementos de una subestación eléctrica a través de un diagrama unifilar.	Elaborar el diagrama unifilar de una instalación eléctrica industrial utilizando software especializado.	honestidad para realizar actividades en forma individual y en equipo en forma proactiva.
			Ejercer liderazgo en la práctica de laboratorio, coordinando las actividades para el buen resultado de la práctica o proceso a desarrollar.

Proceso Enseñanza-Aprendizaje

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	-

Métodos y técnicas de enseñanza	Medios y materiales didácticos	Espacio Formativo		
Metodos y teerneas de enserianza	Wedios y materiales diddeless	Aula	Х	
Equipos colaborativos.	Pizarrón.	Laboratorio / Taller	Х	
Tareas de Investigación.	Cañón.	Empresa	Х	
Técnica Expositiva.	Banco de pruebas de transformadores.			
	Banco de control de motores eléctricos.			
	Simuladores.			

Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
Los estudiantes clasifican los componentes en los diferentes sistemas de una subestación eléctrica industrial.	A partir del análisis práctico identificar los componentes de una subestación eléctrica industrial y documentarlo en un reporte técnico incluyendo los componentes de un entorno laboral.	Ejercicios prácticos. Evaluación de desempeño.		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Unidad de Aprendizaje	IV. Diagramas de	V. Diagramas de control de motores eléctricos.				
Propósito esperado		l estudiante identificará los elementos del control de motores eléctricos para interpretar los diagramas de onexión del control.				
Tiempo Asignado	Horas del Saber	7	Horas del Saber Hacer	11	Horas Totales	18

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Esquemas de control y protección eléctrico de motores.	Identificar la simbología de los circuitos control y protección de los motores CD y CA.	Utilizar la simbología del diseño de circuitos de control y protección de los motores CD y CA.	Desarrollar el pensamiento analítico a través de la identificación de conceptos
Elementos de control y simbología.	Explicar el procedimiento para el control del arranque, paro, inversión de giro y variación de velocidad de un motor CD y CA.	Diagramar los diferentes elementos de control y protección.	para resolver problemas en su formación académica o su entorno. Asumir la responsabilidad y honestidad para realizar
Esquemas de control.	Explicar el procedimiento para el arranque y paro, cambio de giro y control de velocidad de un motor de corriente directa y corriente alterna	Elaborar el diagrama unifilar de los diferentes esquemas de controles eléctricos utilizando software especializado.	actividades en forma individual y en equipo en forma proactiva. Ejercer liderazgo en la práctica de laboratorio, coordinando las actividades para el buen resultado de la práctica o proceso a desarrollar.

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Proceso Enseñanza-Aprendizaje					
Métodos y técnicas de enseñanza	Medios y materiales didácticos	Espacio Formativo			
Metodos y techicas de ensenanza	ivieulos y materiales didacticos	Aula	Х		
Análisis de proyectos.	Pizarrón.	Laboratorio / Taller	Х		
Equipos colaborativos.	Cañón.	Empresa			
Técnica Expositiva.	Banco de pruebas de transformadores.				
	Banco de control de motores eléctricos.				
	Simuladores.				

Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
El estudiante identifica la aplicación de los diferentes tipos de motores en la interpretación de los diagramas de control eléctrico.	A partir de un caso práctico analizar los elementos de control de motores eléctricos y documentar en un reporte técnico interpretando diagramas de conexión del control.	Guía de observación. Rúbrica.		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Unidad de Aprendizaje	V. Eficiencia ene	V. Eficiencia energética en sistemas eléctricos.				
Propósito esperado	El estudiante identificará las condiciones de trabajo de los sistemas eléctricos industriales para evaluar la eficiencia energética eléctrica en base a la normatividad vigente.					
Tiempo Asignado	Horas del Saber	10	Horas del Saber Hacer	14	Horas Totales	24

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Proyectos de iluminación.	Describir los diferentes tipos de sistemas de iluminación en el desarrollo de proyectos en la industria. Definir los niveles de iluminación recomendados para los diferentes tipos de sistemas de iluminación de acuerdo con la normatividad vigente.	Seleccionar los diferentes tipos de iluminación, interior, exterior y emergencia en una instalación eléctrica industrial. Calcular los diferentes niveles de iluminación de acuerdo con la normatividad vigente.	Desarrollar el pensamiento analítico a través de la identificación de conceptos para resolver problemas en su formación académica o su entorno.
Sistemas de fuerza.	Describir los diferentes sistemas de fuerza que utilizan motores de corriente alterna y corriente directa en una instalación industrial. Interpretar los datos de placa de un sistema de fuerza. Describir los sistemas de fuerza evaluando la eficiencia energética eléctrica aplicando la normatividad vigente.	Evaluar la eficiencia energética eléctrica de los diferentes sistemas de fuerza.	Asumir la responsabilidad y honestidad para realizar actividades en forma individual y en equipo en forma proactiva. Ejercer liderazgo en la práctica de laboratorio, coordinando las actividades para el buen resultado de la

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Inmótica.	Identificar y analizar las deficiencias en	Realizar un sistema automatizado	práctica o proceso a
	las instalaciones eléctricas de las	de encendido y apagado de luces.	desarrollar.
	Lautomatizado	Comparar el consumo de energía con y sin automatización.	
	Sugerir equipos automatizados que contribuyan con el desarrollo de un sistema inmótico.		

Proceso Enseñanza-Aprendizaje				
Métodos y técnicas de enseñanza	Medios y materiales didácticos	Espacio Formativo		
Metodos y tecinicas de ensenanza	Medios y materiales didacticos	Aula	Х	
Análisis de proyectos.	Pizarrón.	Laboratorio / Taller	Х	
Equipos colaborativos.	Cañón.	Empresa		
Tareas de Investigación.	Banco de pruebas de transformadores.			
	Banco de control de motores eléctricos.			
	Simuladores.			

Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
El estudiante analiza los diferentes sistemas de fuerza en la evaluación de la eficiencia energética.	A partir del desarrollo de un proyecto de iluminación y sistema de fuerzas documentar en un reporte técnico que incluya la metodología, tipos de iluminación, diagramas y planos de los sistemas de fuerza.	Rúbrica. Guía de observación.		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Perfil idóneo del docente					
Formación académica	Formación Pedagógica	Experiencia Profesional			
Preferentemente Ingeniero eléctrico, en energía o afín, con Maestría y/o Doctorado. Preferentemente con conocimientos en instalaciones eléctricas industriales, subestaciones eléctricas, mantenimiento en instalaciones eléctricas, control de motores eléctricos o áreas afines.	Preferentemente con conocimientos de manejo de herramientas y técnicas didácticas de enseñanza, manejo de trabajo en equipo, proactivo, manejar técnicas de evaluación.	Preferentemente con experiencia en instalaciones eléctricas industriales, mantenimiento eléctrico, auditor y verificador de instalaciones eléctricas, implementación de proyectos de instalaciones eléctricas y diseño de control de motores, o áreas afines.			
Preferentemente con maestría y/o doctorado con especialidad en sistemas eléctricos industriales, sistemas de potencia eléctrica, control de motores, y subestaciones eléctricas o áreas afines.					

Referencias bibliográficas						
Autor	Año	Título del documento	Lugar de publicación	Editorial	ISBN	
Rubén Roberto Levy	2018	Instalaciones eléctricas industriales, modernos criterios de proyecto,	Argentina	Universitas	9789875720787	
Julián Cantos Serano, Jaime Pérez Llorens.	2018	Instalaciones eléctricas básica	Madrid, España	PARANINFO	978-84-283- 4005-2	
Javier García Rodrigo	2019	Técnicas y procesos en instalaciones eléctricas	Madrid, España	PARANINFO	978-84-283- 4078-6.	
José García Trasancos	2020	Instalaciones eléctricas en media y baja tensión	Madrid, España	8a Edición, PARANINFO	978-84-283- 4402-9	

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Antonio Jesús Mendoza Ramírez	2023	UFO: Montaje de instalaciones eléctricas de enlace en edificios	Málaga	IC Editorial	978-84-1103- 669-6
Iván Gómez Suárez	2020	Mantenimiento electromecánico de motores eléctricos	Madrid España	PARANINFO	978-84-283- 4271-1
Irving L. Kosow	2021	Control de máquinas eléctricas	Barcelona España	Reventé S.A.	978-84-291- 9023-6
Angel González Prieto, Juan José Aciego Gallardo, Ignacio González Prieto, Mario Javier Durán Martínez	2022	Accionamientos eléctricos, Fundamentos, control y aplicaciones	Madrid, España	PARANINFO	978-84- 1366520-7
Douglas Leonard Covarrubias	2019	Manual práctico de iluminación	Colombia	Alfaomega	978-958-778- 564-7

Referencias digitales					
Autor	Fecha de recuperación	Título del documento	Vínculo		
Neagu Brain Servan, Eduardo	2024	Competo, Instalaciones eléctricas: conceptos Básicos y diseño.	https://es.pdfdrive.com/instala ciones-el%C3%A9ctricas- conceptos-b%C3%A1sicos-y- dise%C3%B1o- e176412076.html		
Enríquez Harper	2024	Manual práctico de instalaciones eléctricas	https://es.pdfdrive.com/manua l-pr%C3%A1ctico-de- instalaciones-el%C3%A9ctricas- e146214293.html		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	

Vázquez Arenas, Gemma	2024	Manual de instalaciones eléctricas en baja tensión, ICT en iluminación interior en edificios y viviendas.	https://es.pdfdrive.com/manua l-de-instalaciones- el%C3%A9ctricas-de-baja- tensi%C3%B3n-ict-e- iluminaci%C3%B3n-interior-en- edificios-de-e58979850.html
Enríquez Harper	2024	Elementos de diseño de subestaciones	https://es.pdfdrive.com/eleme ntos-de-diseno-de- subestaciones- e181569788.html
	2024	Sistemas de control de motores eléctricos.	https://es.pdfdrive.com/sistem as-de-control-de-motores- electricos-industriales- e39473466.html
ELECCALC	2024	Software de cálculo de instalaciones eléctricas en baja y alta tensión.	https://www.trace- software.com/es/elec- calc/software-calculo- instalaciones-electricas/
ETAP.	2024	Software para el análisis y operación de sistemas eléctricos de potencia	https://etap.com/es
Francisco H. Núñez Ramirez	2024	Centrales de generación y subestaciones eléctricas	https://core.ac.uk/download/2 25150793.pdf

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-31.1	1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024		